Kernel-type Estimators for the Extreme Value Index by P. Groeneboom,

نویسنده

  • H. P. LOPUHAÄ
چکیده

A large part of the theory of extreme value index estimation is developed for positive extreme value indices. The best-known estimator of a positive extreme value index is probably the Hill estimator. This estimator belongs to the category of moment estimators, but can also be interpreted as a quasimaximum likelihood estimator. It has been generalized to a kernel-type estimator, but this kernel-type estimator can, similarly to the Hill estimator, only be used for the estimation of positive extreme value indices. In the present paper, we introduce kernel-type estimators which can be used for estimating the extreme value index over the whole (positive and negative) range. We present a number of results on their distributional behavior and compare their performance with the performance of other estimators, such as moment-type estimators for the whole range and the quasi-maximum likelihood estimator, based on the generalized Pareto distribution. We also discuss an automatic bandwidth selection method and introduce a kernel estimator for a second-order parameter, controlling the speed of convergence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

Density estimation in the uniform deconvolution model

We consider the problem of estimating a probability density function based on data that are corrupted by noise from a uniform distribution. The (nonparametric) maximum likelihood estimator for the corresponding distribution function is well defined. For the density function this is not the case. We study two nonparametric estimators for this density. The first is a type of kernel density estima...

متن کامل

Improving Second Order Reduced Bias Extreme Value Index Estimation

• Classical extreme value index estimators are known to be quite sensitive to the number k of top order statistics used in the estimation. The recently developed second order reduced-bias estimators show much less sensitivity to changes in k. Here, we are interested in the improvement of the performance of reduced-bias extreme value index estimators based on an exponential second order regressi...

متن کامل

Functional kernel estimators of conditional extreme quantiles

We address the estimation of “extreme” conditional quantiles i.e. when their order converges to one as the sample size increases. Conditions on the rate of convergence of their order to one are provided to obtain asymptotically Gaussian distributed kernel estimators. A Weissman-type estimator and kernel estimators of the conditional tailindex are derived, permitting to estimate extreme conditio...

متن کامل

A robust estimator for the tail index of Pareto-type distributions

In extreme value statistics, the extreme value index is a well-known parameter to measure the tail heaviness of a distribution. Pareto-type distributions, with strictly positive extreme value index (or tail index) are considered. The most prominent extreme value methods are constructed on efficient maximum likelihood estimators based on specific parametric models which are fitted to excesses ov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004